

Visual Departures

Ltd.™

1641 Third Avenue Suite 202 New York, NY 10128 212/534-1718 800/628-2003 FAX 212/410-3328

FOCALWARE 1200

si-f

TABLE OF CONTENTS

Introduction	3
Sun's Azimuth & Elevation	.5
Minolta Color Temperature to CC Filters 1	11
Color Compensating Filters 1	12
Calculating Bellows & Filter Factors1	14
Lighting Ratios1	15
Accumulated Flash1	16
Reciprocity Failure Corrections1	17
Depth of Field2	20
Lens Equivalents2	22
Time Percentage Changes2	23
Inch & Millimeter Conversions2	24
Appendix	?5

INTRODUCTION

The photograph below identifies the photography program keys with the letters **A** through H. Although these letters do not appear on the computer **itself (that would** be too easy), the documentation examples refer to these letters to describe access to the programs.

Below is acrashcourse to get your started by acquainting you with the main hardware points. Your Instruction Manual is a good source of detailed information, and in recommended.

1. Turn unit on by pressing the ON button. The display will read: $DEG \qquad 0.$

It is ready to be used as a standard calculator using the keypad on the right. The photography programs are accessed by pressing one of eight keys on the left. If you are into one of the photography programs and want to get back to the calculator just press the **ON(CA)** key and you are back in the calculator mode. You can turn off the computer at any time. You can also choose any program you desire even if in the middle of another one by pressing any of the photo software keys on the left. A brief description of the calculating functions are on the inside of the computer cover.

2. The computer is designed to turn the display off, to save batteries, 7 minutes following no activity on the keyboard. Reactivate the display with ON.

3. In the following documentation, the YES key is referred to as YES; the NO key as NO and the ENTER key as ENTER

Initialization Instructions: To prepare the 1270 computer after a battery change or replaced EPROM do the following: Turn unit on and press pen or pencil into small hole in back of the computer called All Reset. The screen goes: ** ** . Press ENTER and the screen goes *. Turn it off then on and the computer is ready to go. Consult your manual for further information.

SUN'S AZIMUTH & ELEVATION

A B C D E F G H

PURPOSE: This program predicts when and if the sun will shine at a predetermined angle anytime of the year, anywhere in the world. The program takes into account

the month, day, year, longitude, and latitude. In the USA, it additionally prompts for daylight savings and time zone. The computer then asks for the desired **compass** reading. The result is the time of day and the elevation. The computer can also provide sunrise and sunset times at the chosen locations and the azimuth of the sun at that time.

APPLICATION: In architectural photography, the photographer can take compass readings of important angles before the camera is out of the bag. Then the photographer can plan the day, exteriors and interiors, around when the light will be worth looking at for each of the shots which the computer predicts. Fashion, portrait and commercial photographers who need to shoot at a particular location where sunlight contributes to the lighting scheme would benefit as well. The only thing the program will not do, however, is predict a cloudy day. This worry is left to you!

KEYSTROKE	DISPLAY	COMMENTS
Menu key "A"	NEW DATA, Y/N?	This option is useful
** Note ** if this		for updating internal
is the first time		information like date
you are using the		and location which
computer & this		are essential to the
program it will		program. Typically
automatically prompt		you need new data the
for new data with-		first time you use
asking permission		the Sun Program each
to do so.		day. Choose New here.
YES	MONTH= ?	Requests the month
		you need the informa-
		tion for. Try June.
		Input 6 for 6th month.
6 & ENTER	DAY= ?	Day request. Try 1st.
1 & ENTER	YEAR= ?	Try 1991 for example.
	5	

SUNLIGHT (Continued)

KEYSTROKE	DISPLAY	COMMENTS
1991 & ENTER	LONGITUDE= ?	Requests the east or
		west longitude of the
		desired location. Try
		New York City for this
		with a 74 West input.
74 & ENTER	1=EAST 2=WEST	Choose West option.
2 &ENTER	LATITUDE= ?	NYC latitude is 40.45
		North. Input 40.45
40.45 & ENTER	1=NRTH 2=STH	Choose North option.
1 & ENTER	EASTERN, Y/N?	Since New York City
		is in the Eastern
		Time Zone answer yes.
		Other US zones are:
		Central, Mountain,
		Pacific, Yukon and Alaska.
YES	DAYLT SAV=?_	Asks whether daylight
		savings is in effect.
YES	NEW DATA, Y/N?	No need for new data,
		rather: sun's angle.
NO then YES	SUNS AZIMUTH?	Requests actual azi-
	at ANGLE, Y/N?	muth of the sun where
		you want it to appear.
		Assume you are shoot-
		ing a building which
		faces 145°. A 75°
		sun angle shows the
		texture and form of
		a structure through
		its sidelighting. To
		find out what time of
		day the sun shines at
		75°, input 75.

KEYSTROKE	DISPLAY	COMMENTS
75 & ENTER	COMPUTING!	Allow 20 seconds
Wait on display.	7:08AM	At 7:08am on June I,
Hit ENTER after you	AZ=75 EV=16.7	1991 in New York City
view the time to		the sun will appear
display the AZ & EV.		at a 75" azimuth (or
		compass reading) with
		an elevation (how
		high in the sky) of 16.7".
ENTER	NEW DATA, Y/N?	Try Sunrise option.
NO twice	SUNRISE, Y/N?	Correct option.
YES.	COMPUTING!	Sunrise occurs in NYC
ENTER after time	SUNRISE= 5:33AM	on June 1, 1991 at
display for azimuth	AZ= 60	5:33am and will be
		located at 60° on the
		compass.
ENTER	NEW DATA, Y/N?	NO until sunset.
YES at Sunset	COMPUTING!	Sunset on the same
and ENTER after	SUNSET= 8:16 PM	day would occur at
time for azimuth	AZ= 299	8:16pm and would set
		at 299" azimuth.
ENTER until	TIME H.M ?	Prompts for a time of
you reach time		day and then provides
option then YES		sun info for then. It
		works just the oppos-
		site of the angle op-
		tion since here you
		already know the time
		of day and want to
		see what the sun is
		doing. A help for
		preproduction, etc.

.

.

SUNLIGHT	(Continued)
----------	-------------

KEYSTROKE	DISPLAY	COMMENTS
		Try 5:15pm.
5.15 & ENTER	1=AM 2=PM	Choose PM (option 2)
2 & ENTER	COMPUTING!	Wait on display.
ENTER to show	5:15PM	Azimuth and elevation
sun azimuth & EV.	AZ= 272 EV= 32.6	provided for 5:15pm.
ENTER	NEW DATA, Y/N?	Let's look at NYC for
		January 1, 1991.
YES	MONTH= 6?	Change to January by
		replacing 6 with 1.
1 and ENTER	DAY= 1?	Since we are changing
	ENTER	only the month, and
		all other info will be
		the same for this one
		example, you need only
		to ENTER each time to
		keep the same data in-
		tact. An even quicker
		method here is to type
		"+" to accept the
		current settings.
+ and ENTER	NEW DATA, Y/N?	No. Choose Angle.
NO then YES	SUNS AZIMUTH?	Try 75 degrees.
75 & ENTER	NOT AVAILABLE	The computer indicates
		no sunshine at 75° on
		January 1. You can
		try inputting other
		months to find out if
		the sun will shine at
		75 degrees and amaze
		your clients and friends.
		,

KEYSTROKE	DISPLAY	COMMENTS
ENTER & YES	MONTH= I ?	Try September here.
9 and ENTER	DAY= I ?	Keep the same day.
ENTER	YEAR= 1991?	Keep year the same.
ENTER	LONGITUDE= 74W?_	Try Sydney Australia.
		Their Longitude there
		is 152 degrees East.
152 and ENTER	1=EAST 2=WEST	Option 1 for East.
1 & ENTER	LATITUDE= 40.45	Latitude is 34° South.
34 & ENTER	1=NRTH 2=STH	Choose option 2
2 & ENTER	CALIBRATING	The computer enters
		the calibration mode
		whenever a location
		outside the USA is
		chosen. It ignores
		daylite savings & time
		zones. Instead it
		displays its guess at
		sunrise for that date
		and location and then
		needs verification.
Wait on Display	SUNRISE =7:20AM	For this calibration
ENTER after	AZ= 79	check sunrise for the
time display two	OK (Y/Time?)	inputted day from the
times to get Y/N		local paper. If you
question.		agree with the time,
		type YES. Otherwise
		type in the correct
		sunrise and ENTER.
		For this example, say

SUNLIGHT (Continued)

KEYSTROKE	DISPLAY	COMMENTS
6.2 & ENTER	NEW DATA, Y/N?	No need to calibrate
		further unless you
		change the location
		or the date or both.
		The computer is ready
		to take your option.
		Answer NO to New data
		and select the option
		of your choice.

10

MINOLTA COLOR TEMPERATURE TO CC FILTERS

PURPOSE: This program converts the Minolta Color temperature meter LB & CC #'s into their equivalent CC filters.

•

APPLICATION: Eliminates the need to use the light balancing filters since the final filter pack is in CC filters.

KEYSTROKE	DISPLAY	COMMENTS
"B"	CCF, Y/N?	We need LB option.
NO then YES	LB#?	Say the meter gives a
		reading of -21 LB #.
-21 & ENTER	CC#?	Try 18 for this.
18 & ENTER	15B 32M 2.3 FF	The CC equivalent is
		15 Blue + 32 Magenta.
		Filter factor $= 2.3$
ENTER	OR + 1.2 STOPS	Or open aperture 1.2
		stops.
ENTER	LB#?	Enter 0 this time.
0 & ENTER	CC#?	Try 13 here.
13 & ENTER	30M 1.6 FF	30 Magenta called for
		Filter factor $= 1.6$
ENTER	OR +0.6 STOP	Or open aperture .6
		(2/3's) of a stop
	11	

COLOR COMPENSATING FILTERS

В С D G F Н 11

PURPOSE: This program adds together all CC filters used on a lens, or in the enlarger; subtracts neutral density, then provides the equivalent color correction usingone or

two CC filters and their filter factor.

APPLICATION: This program is helpful when a situation calls for more than one CC filter. Typically a location interior shot requires filtration for the light source, the film emulsion color balance, & CC filters to correct for the reciprocity failure color shifts. The required correction could easily average 3 or more filters. By removing neutral density you provide more light for the exposure and put less filter material between the lens and film for better optical results. Applications also include duping film and color printing corrections.

KEYSTROKE	DISPLAY	COMMENTS
"B" menu key.	CCF, Y/N?	Answer YES here since
_		we want CC routine.
"YES"	CC FILTER?	CC filter inputs now.
		Assume a 40 Yellow is
		needed. Input 40Y.
40 & ENTER	CYAN, Y/N?	NO until Yellow
YES at Yellow	CC FILTER?	Requests another CC
		Try 15 Red this time.
15 & ENTER	CYAN, Y/N?	NO until RED, Y/N?
YES at Red	CC FILTER?	Now add 25 Cyan.
25 & ENTER	CYAN, Y/N?	Answer YES this time.
YES	CC FILTER?	Inputs are finished.
		To compute the answer
-		press ENTER only.
ENTER once for	10G 30Y 1.5 FF	Simplified equivalent
color & factor then	OR +0.5 STOP	color. 1.5 factor or
again.		open lens 1/2 stop
		I
	12	

KEYSTROKE	DISPLAY	COMMENTS
ENTER	CC FILTER?	Example 2. 30 Green.
30 & ENTER	CYAN, Y/N?	NO until Green.
YES at GREEN	CC FILTER?	Now input 30 Magenta.
30 & ENTER	CYAN Y/N?	NO till Magenta
YES at MAGENTA	CC FILTER?	ENTER to conclude.
ENTER	NO CC NEEDED	Since complementary
		colors of equal CC value
		cancel each other-no CC
		filter is needed.
ENTER	CC FILTER?	This program can also
		find complementary
		colors. Use - before
		the number to subtract
		that color.
20 and ENTER	CYAN, Y/N?	Answer YES.
YES	CC FILTER ?	ENTER to conclude.
ENTER	20R 1.4 FF	Adding 20 Red removes
	or +0.4 STOP	20 Cyan.
ENTER	CC FILTER ?	Now combine plus &
		values. Enter 40R,
		-20Y, 10C, then -20B.
Per Instructions.	30R 1.6 FF	Adding & subtracting
	or +0.6 STOP	are ok. Should you
		overshoot the color
		menu (ie CYAN, Y/N?),
		keep hitting NO until
		your color cycles around.
		Also, when a given color
		doesn't match your filter
		(ie 16B 34M) round them
		off to 15B and 35M

CALCULATING BELLOWS & FILTER FACTORS

PURPOSE: This program utilizes lens focal length, bellows draw & filter factor to provide an exposure correction for either shutter speed or aperture.

٨,

۲,

.,1

APPLICATION: Whenever a scene is metered outside the camera, as is often the case with medium and large format cameras, the final exposure is affected by both the bellows draw (if the camera is focused at shorter-than-infinity) and filter factor.

KEYSTROKE	DISPLAY	COMMENTS
"C" at Menu	FACTORS, Y/N?	Choose this option.
YES	FOCAL LENGTH?	Requests focal length
		of the lens in use.
_		Try a 55 mm lens.
55 & ENTER	INCHES, Y/N?	We need millimeters.
NO & YES to	BELLOWS DRAW ?	Requests the total
millimeter option.		bellows extension. For
_		this example try 60mm.
60 & ENTER	FILTER FACTOR?	Input the factors of the
		filters in use. If more than
		one filter is used, multiply
		factors together. If no
		filters in use, press
		ENTER. Try 2.
2 & ENTER	SHUTTER [*] 2.3	Need to multiply our
		shutter speed by 2.3 due to
		the light lost through
		bellows draw and filter
		factors.
ENTER	OR +1.2 STOPS	We could instead open
		aperture by 1.2 stops
		for equivalent effect.
	DIST=2FT 21N	Distance to subject is 2
		feet 2 inches.
	14	

LIGHTING RATIOS

PURPOSE: This program gives lighting ratios for either strobe or continuous light.

APPLICATION: Lighting ratios are important in all

aspects of photography from portraiture to balancing a room interior to outside sunlight. They also come in handy in synchro-flash situations outdoors where a flash unit is used in a fill-flash application. The amount of fill is a component of lighting ratios.

KEYSTROKE	DISPLAY	COMMENTS
"C" on Menu	FACTORS, Y/N?	We need ratios.
NO	RATIOS, Y/N?	Correct option. Yes.
YES	1:2, Y/N?	Requests the lighting
		ratio you desire. Try
		a 1:3 ratio here.
NO until the	METERED F/INT?	Enter the whole # only
1:3 option appears		of the f/ stop metered
then press YES		from your strobe or
		continuous lite meter.
		Try f111 & 213 here.
11 & ENTER	METERED F/FRAC?	Now enter the fraction
		metered, if any. When no
		fraction exists, press
		ENTER only. Here we
		need to input 213
2÷3 & ENTER	MAIN, Y/N?	Computer prompts for
		whether this reading if
		main or fill. Try main for
		this one.
YES then	MAIN= F/11 +2/3	With a main of f111 & 2/3
ENTER	FILL= F/8	and a fill of f/8 you have
	·	accomplished a 1:3 ratio.
ENTER for another of	choice.	
	15	

ACCUMULATED FLASH

PURPOSE: Provides required 'pops' or bursts of flash to yield more light for a desired f/ stop when a smaller f/ stop has been metered.

APPLICATION: This program is helpful to those photographers who own strobe meters without the accumulated flash modes.

KEYSTROK E-	DISPLAY	COMMENTS
"C" at Menu	FACTORS, Y/N?	NO until Flash option.
NO until ACC FLASH	DESIRED F/INT?	Requests whole f/ stop
then YES		desired. For example, f/22
		& $1/3$ is needed f/ stop to
		achieve the critical depth
		of field for a table top
		shot. Enter only the
		whole number here.
22 & ENTER	DESIRED F/FRAC?	Now enter the fraction
		(if any) of your f/
		desired. ENTER only if no
		fraction. In this example,
		we input 113 (use the ÷
1		key for /).
1÷3 & ENTER	METERED F/INT?	Requests the f/ stop from
		strobe meter. In this e
		example, try a reading of
		f/8 from the flash meter.
8 & ENTER	METERED F/FRAC?	No fraction indicated.
ENTER	F22 +1/3	
ENTER	12 FLACE POPS	12 pops of flash with
		recycle between each.
		Test for color shifts since
		the intermittency effect can
		shift the film's color.
	16	

RECIPROCITY FAILURE CORRECTIONS

PURPOSE: To provide reciprocity effect corrections for selected Polaroid films, color & black & white films at long exposures. Films included are Polaroid 52, 55 and

665. The color films featured: 64T, VPL, EPT, K25, RFP, RDP, RVP, RTP, RHP, & RSP. Black & white films are: TMX, TMY, TP, TX, PX & HP5.

APPLICATION: When using slow ASA films in low light conditions where a small aperture is required for depth-of-field. In these situations where the meter indicates an exposure of one second or longer, the program provides a quick and accurate method of coping with reciprocity failure.

KEYSTROKE	DISPLAY	COMMENTS
"D" at Menu	Polaroid Y/N?	Film category choice.
		To select the Polaroid
		category answer yes.
YES	TYPE 52 Y/N?	Choose Type 52 Polaroi
		for this example.
YES	METERED TIME?	Requests the metered
		shutter speed. Try
		20 seconds here.
20 & ENTER	SHUTTER SPEED=	The corrected exposure
then ENTER again	30.5 SEC	time is 30.5 seconds.
		No color correction
		is indicated for any
		of the transparency
		films because this
		varies from emulsion
		to emulsion. You will
		need to test your film
		for these shifts.
ENTER	Polaroid Y/N?	Main menu again. Look
		at color films this time.
	17	

Reciprocity Correction	ons (Continued)		Reciprocity Correction	ons (Continued)	
KEYSTROKE	DISPLAY	COMMENTS	KEYSTROKE	DISPLAY	COMMENTS
NO	Color Y/N?	Select color with yes.	15 & ENTER	SHUTTER SPEED=	Corrected time for $T-MAX$
YES	KODAK, Y/N?	Select Kodak menu with	then ENTER again	24.5 SECONDS	for 15 second metered
		yes.			time.
YES	64T, Y/N?	Choose this for the new	ENTER	POLARIOD, Y/N?	_
		Kodak Tungsten film.			
		Press ves.			
YES	METERED TIME?	Input 60 seconds.			
60 & ENTER	SHUTTER SPEED=	Corrected time for			
then ENTER again	68.5 seconds	Kodak Tungsten film			
ENTER	POLARIOD, Y/N?	Select YES at COLOR			
		option and YES at FUJI,			
		Y/N?			
ENTER	RFP+DP+VP, Y/N?	Since the reciprocity			
		curves are the same for			
		Fuji's RFP, RDP & RVP			
		select YES at this prompt,			
		using Velvia (RVP) in this			
		example.			
YES	MEASURED TIME?	Try 20 seconds here.			
20 & ENTER	SHUTTER SPEED=	Use 35.5 seconds for			
	35.5 SECONDS	Velvia film when a	1		
		metered reading is 20			
		seconds. This would also			
		apply to Fuji 50 (RFP) and			
		Fuji 100 (RDP).			
ENTER	POLARIOD, Y/N?	Try for black & white			
		films this time Press NO			
		until B&W menu then			
		YES.			
YES at B&W	TMX Y/N?	Select YES here for T-100			
		T-Max films.			
YES for T-MAX	METERED TIME?	Try 15 seconds.			
	18			19	

DEPTH OF FIELD

B C D PURPOSE: To provide the appropriate f/ stop and focus H point to achieve depth of field between near and far desired points of focus.

APPLICATION: Eliminates the need to consult tables since this program works for 35mm, 120, 4x5 and 8x10 formats.

KEYSTROKE	DISPLAY	COMMENTS
Menu key ''E''	FOCAL LENGTH?	Requests focal length
under DOF		of lens in use. Try
		90 millimeters here
90 & ENTER	INCHES, Y/N?	We want millimeters.
NO	MM, Y/N?	Correct option.
YES	LENS F/# MAX?	Here you put in your
		largest f/# on your lens
		which is your minimum
		aperture (ie $f/22$ or 32).
		Try 32.
32 & ENTER	35, Y/N?	Prompts for camera
		format. Assume 4x5 is
		camera of choice.
NO until 4x5	4x5, Y/N?	Correct option.
YES	NEAR FOCUS FT?	Requests the nearest
		distance in a scene
		to be in focus. Try a
		point 7' 8" away from
		camera as near focus.
7 and ENTER	NEAR FOCUS IN?	Now for inches input.
8 & ENTER	FAR FOCUS FT?	Requests far focus.
		Try 50 feet here.
50 and ENTER	FAR FOCUS IN?	No inches just ENTER.
ENTER	FOCUS	Hit ENTER for answer.
	20	

KEYSTROKE		COMMENTS
ENTED	DISPLAY	<u> </u>
	13 F1 3.5 IIN	Focus your camera at
	F22	this distance. Pressing
		ENTER yields flstop
		required for your desired
		near to far focus.
ENTER	FOCAL LENGTH?	Try a 10 inch lens.
10 & ENTER	INCHES, Y/N?	We want inches here.
YES	LENS F/# MAX?	Suppose this lens is f/45.
45 & ENTER	35, Y/N?	Try the 120 format.
NO	120, Y/N?	Correct option.
YES	NEAR FOCUS FT?	Try 10 feet for near.
10 & ENTER	NEAR FOCUS IN?	No inches input here.
ENTER	FAR FOCUS FT?	Try 50 feet far point.
50 then ENTER	EXCEEDING F/45	The required f/# exceeds
		vour minimum aperture.
		Your options include
		backing up from the
		subject using a wider
		angle lens or both to
		increase the depth of field
		for the shot. Then retry
		Press ENTER to keep
		some format/long Try
		20' and 45' for now
		50 and 45 for neinte
ENTER	NEAR FOCUS FT?	Input 30 feet
20 than ENTED		Input 50 leet.
twice.	FAK FUCUS F1?	Input 45 feet.
45 then ENTER	FOCUS	New focus distances
three times.	36 FT 0 IN F22+1/2	result in an accept-
		able flstop required.
	21	

LENS EQUIVALENTS

PURPOSE: This program gives equivalent lens focal lengths for various camera formats.

APPLICATION: When you are shooting a scene on two different camera formats at the same time and want to know the which focal length lens on one camera will give the same viewing angle as the other lens and camera.

KEYSTROKE	DISPLAY	COMMENTS
" F at Menu	LENS?	Requests focal length
		of the lens in use.
		Try a 55 mm lens.
55 & ENTER	IN Y/N?	We need millimeters.
NO	MM, Y/N?	Correct option.
YES	FORMAT NOW	Requests format used.
	35, Y/N?	35 mm for example.
"YES"	FORMAT NEEDED	Requests the other
	35, Y/N?	format to use. Try 645.
NO until 120	92 MM or	A 92mm (which is also
then YES then YES	3.59 INCHES	a 3.59inch) lens on
again at 645 promt.		a 645 camera has the
		same angle of view as
_		a 55mm lens on 35mm.
ENTER	LENS?	Repeats step #1 above.
L	22	

TIME CHANGES BY PERCENT

PURPOSE: This program calculates a percentage + or - change in a given inputted time.

APPLICATION: Changes in film processing times from

normal are anecessary part of controlling the contrast index of agiven black & white **film.** Thus it can be utilized as a method of accommodating scene contrast with an appropriately developed negative.

KEYSTROKE	DISPLAY	COMMENTS
"G" at Menu	TIME (M.S)?	Prompts for the time
then select		to be changed. Enter
% Change.		it as number of min-
		utes then decimal then
		seconds. For example:
		$10.5 = 10 \min 5 \sec \theta$
		$10.45 = 10 \min 45 \sec \theta$
		$10 = 10 \min$
10.3 & ENTER	% CHANGE?—	Requests the amount of
		change desired. A "-"
		preceding the number
		means a time decrease,
		no sign means an incr-
		ease. Try a decrease
-		of 15% for example.
15 & ENTER	8M 55S	The new time is 8 min-
		utes & 55 seconds —
		15% less than the original
		time of 10 minutes
		30 seconds.
		ENTER here if you want
		to input other times.
	23	

INCHES TO MILLIMETERS: MILLIMETERS TO INCHES

APPENDIX

PURPOSE: To provide conversion of inches to millimeters and millimeters to inches.

APPLICATION: Helpful in programs where the focal length of your lens is marked in inches. Since the program calls for millimeters; you could convert your values with this program. Other uses occur whenever you need English to Metric and Metric to English conversions.

KEYSTROKE	DISPLAY	COMMENTS
" H at Menu	IN TO MM, Y/N?	This option converts inches to millimeters.
YES	INCHES?	Requests full number of whole # & decimal. Say we have a 7 & 1/2 inch lens.
7.5 & ENTER	190.5 MM	A 7.5" lens is a 190.5 millimeter lens.
ENTER	INCHES?—	Asks for new inches value. To get to the milli- meters conversion part press "H" key & choose MM to IN option
" H key then YES at MM TO IN option	MILLIMETERS?	This program requests a value in millimeters to convert to inches. Try 350.75 mm.
350.75 & ENTER	13.8 IN	350.75 millimeters = 13.8 inches. If you press ENTER you will bring up the mm-in conversion again.

BELLOWS MEASUREMENT: The bellows draw is the total lens to film plane distance, which at infinity is equal to the lens focal length. At closer than infinity focus, the bellows draw equals the focal length plus bellows exten- sion beyond focal length. For example, a 90 mm lens at infinity focus has a bellows draw of 90mm. But when focused at 5.6 feet, the bellows extension is 5 mm beyond 90mm (the focal length), giving a bellows draw of 95mm.

COLOR COMPENSATING: Another application for this program is helpful when you are using duplicate slide film which requires different CC filter packs from one emulsion to another. Normally you subtract the old filter pack from the new to get a starting puck for the new film. Since this program handles both subtraction and addition; enter numbers which you are subtracting as negative ones.

SUN'S AZIMUTH: You are not restricted to inputting only the actual month and day you are operating the computer. Sometimes it is helpful to predict what the light will be doing at some future date. For example, when the computer indicates 'Not Available' due to an egative Elevation, either you have the north facing angle (which never gets light), or you have the wrong time of year. To speed up your predictions, increase the month by two each time and leave the day the same. For example, if February 12th revealed a negative elevation for a certain angle; try April 12, then June 12, and so on until (and if) you get a month that works. For specific predictions you could further vary the days once the month has been found.

Compass readings are more critical in the early morning and late afternoon, since the sun's azimuth changes more slowly during those hours; especially in the summer months.

For critical readings within 15 minutes of accuracy, consult the library for the location of isogonic lines in your area. These lines show the difference between the magnetic north of your compass and true north of the map. For example, say your magnetic north is 15° West of true north as it is in areas of the upper Northeastern I Jnited States. If you wanted to know when the sun would shine at a 120° azimuth from your compass reading, you need to subtract the 15 before inputting your angle

into the computer. So, you would input 105 in response to angle desired to find time of 120" magnetic azimuth (as desired from your compass reading).

When you are using the TIME, Y/N? option of the Sun's program, the computer will give you the time for a true north azimuth. Here we add our factor to get the final corrected figure. For example, if the computer indicated a 130 Azimuth for 11:30am input, we need to add 15 to 130 to give us a compass azimuth of 145° for that time of 11:30am.

If this seems complicated, it is. To clarify: Compass ————> True (subtract variation) True ————> Compass (add variation)

So, when going from a compass reading to true north based reading, subtract the variation; otherwise add the variation when going from true to compass.

When your isogonic map indicates a magnetic north which is EAST of true north, it is a negative number; a magnetic north which is WEST of true north is a positive number.

 $15^{\circ}E = -15$ variation $15^{\circ}W = 15$ variation

$Longitude\,\&\,Latitude\,Listings\,For\,The\,USA$

CODES FOR TIME ZONES:

- E Eastern Standard
- C Central Standard
- M Mountain Standard
- P Pacific Standard

City	Lati-	Longi-	Time	City	Lati-	Longi-	Time
	tude	tude	Zone		tude	tude	Zone
Aberdeen, SD	45.28	98.29	C r	Bismarck, ND	46.48	100.47	C
Akron, OH	41.5	81.31	E	Boise, ID	43.37	116.12	Μ
Albany, NY	42.39	73.45	E	Brattleboro, VT	42.51	72.34	E
Albert Lea, MN	43.39	93.22	C	Bridgeport, CT	41.11	73.11	E
Albuquerque, NM	35.5	106.39	Μ	Brockton, MA	42.5	71.1	E
Alexandria, LA	31.18	92.27	С	Buffalo, NY	42.53	78.52	E
Allentown -				Burlington, VT	44.29	73.13	Е
Bethlehem, PA	40.36	75.28	Ε	Butte, MT	46.1	112.32	Μ
Amarillo, TX	35.12	101.50	С	Cairo, IL	37.0	89.11	С
Ardmore, OK	34.10	97.8	С	Camden, NJ	39.57	75.7	Е
Asheville, NC	35.36	82.33	Е	Canton, OH	40.48	81.23	E
Atlanta, GA	33.45	84.24	Е	Cape May, NJ	38.56	74.56	Е
Atlantic City, NJ	39.22	74.26	Е	Carson City-			
Augusta, GA	33.28	81.58	Ε	Reno, NV	39.10	119.46	Р
Augusta, ME	44.19	69.46	Е	Casper, WY	42.51	106.19	Μ
Austin, TX	30.16	97.45	С	Chadron, NE	42.50	103.0	Μ
Bakersfield, CA	35.23	119.1	Р	Charleston, SC	32.47	79.56	Е
Baltimore, MD	39.17	76.37	Е	Charleston, WV	38.21	81.38	Е
Bangor, ME	44.48	68.46	Ε	Charlotte, NC	35.14	80.51	Е
Rarstow, CA	34.54	17.1	Р	Charlottesville. VA	38.2	78.30	Е
Baton Rouge, LA	30.27	91.11	С	Chattanooga, TN	35.3	85.19	E
Ilcaumont, TX	30.5	94.6	С	Cheboygan, MI	45.39	84.29	E
Bellingham, WA	48.45	122.29	Р	Cheyenne, WY	41.8	104.49	Μ
Bemidji, MN	47.28	94.53	С	Chicago			
Berlin, NH	44.28	71.11	E	Oak Park, IL	41.52	87.38	С
Billings, MT	45.47	108.30	Μ	Cincinnati-			
Biloxi, MS	30.24	88.53	С	Hamilton, OH	39.6	84.31	Е
Binghampton, NY	42.6	75.55	E	Cleveland -			
Birmingham, AL	33.31	86.49	С	Lakewood, OH	41.30	81.42	Е

City	Lati- tude	Longi- tude	Time Zone	City	Lati- tude	Longi- tude	Time Zone	City	Lati- tude	Longi- tude	Time Zone	Clty	a - tudc	Longi- tude	Time Zone
Columbia. SC	34.0	81.2	Е	Galveston, TX	29.18	94.48	С	Lexington-				Oakley, KS	39.8	100.51	С
Columbus, OH	39.57	83.1	Е	Gary, IN	41.36	87.20	C	Frankfort, KY	38.3	84.30	Е	Ogden, UT	41.13	111.58	Μ
Corpus Christi, TX	27.48	97.24	С	Glasgow, MT	48.12	106.38	М	Liberal, KS	37.3	100.55	С	Ogdensbury, NY	44.42	75.30	Е
Craig, CO	40.31	107.33	Μ	Grand Forks, ND	47.55	97.3	С	Lincoln, NE	40.49	96.41	С	Oklahoma City, OK	35.28	97.31	С
Dallas-				Grand Island, NE	40.55	98.21	С	I ittle Rock, AR	34.45	92.17	С	Omaha, NE	41.16	95.56	С
Fort Worth, TX	32.47	96.48	С	Grand Junction, CO	39.4	108.33	Μ	Los Angeles includi	ng Pasad	ena and		Ortonville, MN	45.19	96.27	С
Danville, IL	40.8	87.37	С	Great Falls, MT	47.30	111.17	Μ	Santa, Monica, CA	34.3	118.14	Р	Oshkosh, WI	44.1	88.33	С
Danville, VA	36.36	79.23	Ε	Green Bay, WI	44.31	88.0	С	Louisville, KY	38.15	85.46	E	Parkersburg, WV	39.16	81.34	Е
Davenport, IA	41.32	90.35	С	Greensboro, NC	36.4	79.47	E	Macon, GA	32.50	83.38	E	Paterson, NJ	40.55	74.10	Ε
Dayton, OH	39.45	84.10	E	Hagerstown, MD	39.39	77.43	E	Madison, WI	43.4	89.23	С	Pendleton, OR	45.40	118.47	Р
Decatur, A L	34.36	86.59	С	Harrisburg, PA	40.16	76.53	Е	Manchester-				Pensacola, FL	30.25	87.13	С
Decatur, IL	39.51	88.57	С	Hartford -				Concord, NH	42.59	71.28	E	Peoria, IL	40.42	89.36	С
Denver-				New Britain, CT	41.46	72.41	E	Memphis, TN	35.9	90.3	С	Philadelphia-			
Boulder, CO	40.0	104.59	Μ	Helena, MT	46.36	112.2	Μ	Meridian, MS	32.22	88.42	С	Chester, PA	39.57	75.9	Ε
Des Moines, IA	41.35	93.37	С	Houston, TX	29.45	95.22	С	Miami, FL	25.47	80.12	E	Phoenix, AZ	33.27	112.4	Μ
Detroit-				Indianapolis, IN	39.46	86.10	E	Miles City, MT	46.25	105.51	Μ	Pierre, SD	44.22	100.21	С
Dearborn, MI	42.20	83.3	Е	Ironwood, MI	46.27	90.9	С	Milwaukee, WI	43.2	87.54	С	Pittsburgh-			
Dubuque, IA	42.30	90.41	С	Jackson, MI	42.15	84.24	E	Minneapolis -				McKeesport, PA	40.26	80.0	E
Duluth, MN	46.4 7	92.6	С	Jackson, MS	32.18	90.11	С	St. Paul, MN	44.59	93.16	С	Pittsfield, MA	42.27	73.15	E
Durham, NC	36.0	78.55	E	Jacksonville, FL	30.20	81.40	E	Minot, ND	48.14	101.18	С	Pocatello, ID	42.52	112.27	Μ
Eastport, ME	44.54	67.0	Е	Jefferson City, MO	38.34	92.10	С	Moab, UT	38.35	109.33	Μ	Poplar Bluff, MO	36.46	90.24	С
Eau Claire, WI	44.49	91.30	С	Joplin, MO	37.6	94.31	С	Mobile, AL	30.42	88.3	С	Portland, ME	43.40	70.15	Е
El Paso, TX	31.45	106.29	Μ	Juneau, AK	58.18	134.25	р	Monroe, LA	32.30	92.7	С	Portland, OR	45.31	122.41	Р
Elko, NV	40.50	115.46	Р	Kalamazoo, MI	42.17	85.35	E	Montgomery, AL	32.23	86.19	С	Portsmouth, NH	43.5	70.45	Е
Ellsworth, ME	44.33	68.25	E	Kanab, UT	37.3	112.32	Μ	Muncie, IN	40.12	85.23	Е	Presque Isle, ME	46.41	68.1	Е
Erie, PA	42.7	80.5 [°]	Е	Keene, NH	42.56	72.17	E	Murdo, SD	43.53	100.43	С	Providence, RI	41.50	71.25	E
Eugene, OR	44.3	123.6	Р	Ketchikan, AK	55.21	131.39	Р	Nashville, TN	36.10	86.47	С	Pueblo, CO	38.16	104.37	Μ
Fall River-				Knoxville, TN	35.58	83.55	E	New Haven, CT	41.18	72.56	E	Raleigh, NC	35.47	78.38	E
New Bedford, MA	41.42	71.9	E	Lacrosse, WI	43.48	91.15	С	New London, CT	41.22	72.6	E	Rapid City, SD	44.5	103.14	Μ
Fargo, ND	46.53	96.47	С	Lake Charles, LA	30.14	93.13	С	New Orleans, LA	29.57	90.4	С	Reading, PA	40.20	75.56	Е
Flagstaff, AZ	35.12	111.39	Μ	Lancaster, PA	40.2	76.18	Е	New York, NY	40.45	74.0	E	Redding, CA	40.35	122.24	Р
Flint, MI	43.1	83.41	Е	Lansing, MI	42.44	84.33	E	Newark -Irvington-				Richmond, VA	37.32	77.26	Е
Fort Scott, KS	37.50	94.42	С	Las Cruces, NM	32.19	106.47	Μ	Last Orange, NJ	40.44	74.10	Е	Roanoke, VA	37.16	79.57	E
Fort Smith, AR	35.23	94.25	С	Las Vegas, NV	36.10	115.9	Р	Norfolk, VA	36.51	76.17	Е	Roswell, NM	33.24	104.32	Μ
Fort Wayne, IN	41.4	85.9	Е	Lawrence -				North Platte, NE	41.8	100.46	С	Rutland, VT	43.37	72.58	Е
Fresno, CA	36.44	119.47	Р	Lowell, MA	42.42	71.10	Ε	Norwalk-				Sacramento, CA	38.35	121.30	Р
Gallup, NM	35.32	108.45	Μ	Lewiston, ID	46.25	117.1	Р	Stamford, CT	41.7	73.22	Е	Salina, KS	38.50	97.37	С
			2	28							2	9			

City	Lati- tude	Longi- tude	Time Zone	City	Lati- tude	Longi- tude	Time Zone
Salisbury MD	38.22	75 36	E	Tulsa OK	36.9	95 60	C
Salt Lake City UT	40.45	111 53	M	Tupelo MS	34.16	88 34	C
San Antonio TX	29.25	98 30	C	Vernal, UT	40.27	109.32	M
San Diego, CA	32.43	117.9	P	Walla Walla, WA	46.4	118.20	P
San Francisco-Oakl	and-		-	Washington, DC	38.54	77.1	Ē
San Jose, CA	37.47	122.25	Р	Waterbury -			
Santa Fe. NM	35.41	105.56	М	Meriden, CT	41.33	73.3	Е
Savannah. GA	32.5	81.6	E	Waterloo, IA	42.30	92.20	С
Scranton-				Wausau, WI	44.58	89.38	
Wilkes Barre, PA	41.25	75.40	E	West Palm			
Seattle -Tacoma-				Beach, FL	26.43	80.3	Е
Olympia, WA	47.37	122.20	Р	Wichita, KS	37.42	97.20	С
Sheridan, WY	44.48	106.58	Μ	Williston, ND	48.9	103.37	С
Shreveport, LA	32.31	93.45	С	Wilmington, DE	39.45	75.33	Е
Sioux Falls, SD	43.33	96.44	С	Wilmington, NC	34.14	77.55	Е
South Bend. IN	41.41	86.15	E	Winchester, VA	39.11	78.10	Е
Spartanburg, SC	34.56	81.57	E	Worcester, MA	42.16	71.48	Е
Spokane, WA	47.40	117.24	Р	York, PA	39.58	76.47	Ε
Springfield, IL	39.48	89.3 9	С	Youngstown, OH	41.6	80.39	Ε
Springfield-				Yuma. AZ	32.43	114.37	Μ
Holyoke, MA	42.6	72.36	E				
Springfield, MO	37.13	93.18	С				
St. Johnsbury, VT	44.25	72.1	E				
St. Joseph, MO	39.46	94.50	С				
St. Louis, MO	38.37	90.12	С				
St. Petersburg, FL	27.46	82.3 9	E				
Syracuse, NY	43.3	76.9	E				
Tallahassee, FL	30.27	84.17	E				
Tampa, FL	27.57	82.27	E				
Terre Haute, IN	39.28	87.24	С				
Texarkana, AR	33.26	94.3	С				
Toledo, OH	41.39	83.33	E				
Topeka, KS	39.3	95.40	С				
Traverse City, MI	44.46	85.38	E				
Trenton, NJ	40.13	74.46	E				
Trinidad, CO	37.10	104.31	Μ				
Tucson, AZ	32.13	110.58	М				
			30)			
				,			

NOTES

 ${\ensuremath{\mathbb C}}$ 1990 Visual Departures, Ltd. ${\ensuremath{^{\rm TM}}}$ All rights reserved.

÷ '8

1

;

\$

1